Analytic Combinatorics Exercise Sheet 3

Exercises for the session on 8/5/2017

Problem 3.1

Let $G(z)=\sum_{n} G_{n} z^{n}$ denote the ordinary generating function for the class of unlabelled plane rooted trees, and let $G(z, u)$ denote the ordinary bivariate generating function for this class, where the second parameter is the degree of the root. Recall that $G(z)=\frac{z}{1-G(z)}$ and $G(z, u)=\frac{z}{1-u G(z)}$.

Show that

$$
\left.\frac{\partial}{\partial u} G(z, u)\right|_{u=1}=\left(\frac{1}{z}-1\right) G(z)-1
$$

and hence that the expected degree of the root when the tree has n vertices is

$$
\frac{G_{n+1}-G_{n}}{G_{n}}
$$

Recall from Problem 1.1 on Exercise Sheet 1 that

$$
G_{n}=\frac{1}{n}\binom{2 n-2}{n-1}
$$

and hence show that the expected degree of the root is $\frac{3(n-1)}{n+1}$.

Problem 3.2

Let $T(z)$ denote the exponential generating function for the class of labelled nonplane rooted trees, and let $T(z, u)$ denote the exponential bivariate generating function for this class, where the second parameter is the degree of the root. Recall that $T(z)=z e^{T(z)}$ and $T(z, u)=z e^{u T(z)}$.

Show that the expected degree of the root when the tree has n vertices is $\frac{2(n-1)}{n}$.

Problem 3.3

Let $B(z)=\sum_{n} B_{n} z^{n}$ denote the ordinary generating function for the class of binary strings with no consecutive 0's (note: the empty string is included in this class). Show that

$$
B(z)=\frac{1+z}{1-z-z^{2}},
$$

and hence use the result from Problem 1.4 on Exercise Sheet 1 to produce an asymptotic expression for B_{n}.

A general formula for a meromorphic function $h(z)=\frac{f(z)}{g(z)}$ is given by

$$
\begin{equation*}
\left[z^{n}\right] h(z) \sim \frac{(-1)^{m} m f(\alpha)}{\left.\alpha^{m} \frac{\mathrm{~d}^{m} g(z)}{\mathrm{d} z^{m}}\right|_{z=\alpha}}\left(\frac{1}{\alpha}\right)^{n} n^{m-1} \tag{1}
\end{equation*}
$$

where α is the pole of $h(z)$ that is closest to the origin (if there is a unique closest pole) and m is the order of α. Evaluate the right-hand-side of (1) when $h(z)=\frac{1+z}{1-z-z^{2}}$, and check that this agrees with your earlier asymptotic expression for B_{n}.

Problem 3.4

An alignment is a sequence of cycles, and hence has exponential generating function

$$
A(z)=\frac{1}{1-\log \frac{1}{1-z}}
$$

By taking a Taylor expansion of $1-\log \frac{1}{1-z}$ around the dominant singularity (i.e. the singularity of $A(z)$ that is closest to the origin), show

$$
A(z) \sim \frac{-e^{-1}}{z-1+e^{-1}}
$$

and hence obtain an asymptotic expression for $\left[z^{n}\right] A(z)$.
Evaluate the right-hand-side of (1) when $h(z)=\frac{1}{1-\log \frac{1}{1-z}}$, and check that this agrees with your answer.

Problem 3.5

Let γ_{R} be the closed contour in the complex plane comprised of the real-line interval $[-R, R]$ and a semi-circle in the upper half-plane of radius R. For $R>1$, use the residue theorem to calculate

$$
\int_{\gamma_{R}} \frac{1}{1+x^{2 m}} \mathrm{~d} x
$$

for $m \in \mathbb{N}$, and hence show that

$$
\int_{-\infty}^{\infty} \frac{1}{1+x^{2 m}} \mathrm{~d} x=\frac{\pi}{m \sin \frac{\pi}{2 m}}
$$

Problem 3.6

Calculate

$$
\int_{0}^{2 \pi} \frac{1-e^{i t}}{e^{i t n}} \mathrm{~d} t
$$

for $n \in \mathbb{Z}$. Then use Cauchy's Coefficient Formula to show

$$
\left[z^{n}\right](1-z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{1-e^{i t}}{e^{i t n}} \mathrm{~d} t
$$

and use this to check your answer.

